USS Tomcat NCC - 62114 

Akira Class Marine Subtype Light Carrier/Support Ship

USS Tomcat NCC 62114 Specifications

Akira-class


Class Information


Expected Duration: 80 years
Resupply Interval: 1 years
Refit Interval: 5 years
Role: Heavy Cruiser/Light Carrier - Marine Equipped Subtype
Number in Service: 232


Dimensions


Length: 464.43 meters
Width: 316.67 meters
Height: 87.43 meters
Decks: 19


Warp Rating 


Cruising Speed: Warp 7
Maximum Speed: Warp 9 .6
Maximum Velocity: Warp 9.9 (12 hours maximum)


Personnel 


Crew Compliment: 1050
Officers: 75
Enlisted: 300
Marines: 125 (101 Alpha Unit 12 Bravo Unit)
Civilians: 20

Evacuation Limit: 1000



Auxiliary Craft


Shuttlebays: 2
Shuttles: 10
Runabouts: 4
Fighters: 36 (3 Squadrons of 12 Valkyrie Fighters Each)

TRANSPORT EQUIPMENT

Fighters/Shuttlecraft (Standard and Uprated ONLY)

6 Type 18 Shuttlepods
2 Type 7 Personnel Shuttles
2 Type 6 Personnel Shuttles
4 Danube Class Runabouts

10 Sphinx Class Work Pods

4 Troop Tansports

1 Spec Ops Equipped Venture Class Scout (cloakable)


PERFORMANCE


36 Valkyrie Class Space Superiority Fighters


Standard Impulse Configuration: .25c

ARMAMENT

Standard - 6 Type VI Shuttle-type phasers, 2 micro-Quantum torpedo launchers, 12 Mark X Quantum Torpedoes


Transporters


Four personnel
Four cargo
Four emergency


Tactical Systems


Energy Weapons: 8 Type- XII Phaser arrays 
Torpedo Launchers:

---------------------------- 4 forward (Main Hull)
---------------------------- 2 aft
---------------------------- 4 forward pod (Transphasic Launchers)
---------------------------- 8 aft pod


Torpedoes:


500 Quantum Torpedoes
250 Transphasic Torpedoes

Other Systems:


Duranium/Tritanium Double Hull
Ablative Armor

Shields: MLSS

6.0 UTILITIES AND AUXILIARY SYSTEMS

6.1 NAVIGATION DEFLECTOR

A standard Akira Class main deflector dish is located along the ventral portion of the Akira Class's primary hull, and is located just forward of the primary engineering spaces. Composed of molybdenum/duranium mesh panels over a tritanium framework (beneath the Duranium-Tritanium hull), the dish can be manually moved twelve degrees in any direction off the ship's Z-axis. The main deflector dish's shield and sensor power comes from two graviton polarity generators located on deck 17, each capable of generating 128 MW, which can be fed into two 550 millicochrane subspace field distortion generators.

6.2 TRACTOR BEAM


Type: Multiphase subspace graviton beam, used for direct manipulation of objects from a submicron to a macroscopic level at any relative bearing to the Akira Class. Each emitter is directly mounted to the primary members of the ship's framework, to lessen the effects of isopiestic subspace shearing, inertial potential imbalance, and mechanical stress.

Output: Each tractor beam emitter is built around three multiphase 15 MW graviton polarity sources, each feeding two 475 millicochrane subspace field amplifiers. Phase accuracy is within 1.3 arc-seconds per microsecond, which gives superior interference pattern control. Each emitter can gain extra power from the SIF by means of molybdenum-jacketed waveguides. The subspace fields generated around the beam (when the beam is used) can envelop objects up to 920 meters, lowering the local gravitational constant of the universe for the region inside the field and making the object much easier to manipulate.

Range: Effective tractor beam range varies with payload mass and desired delta-v (change in relative velocity). Assuming a nominal 15 m/sec-squared delta-v, the multiphase tractor emitters can be used with a payload approaching 116,380,000,000 metric tons at less than 2,000 meters. Conversely, the same delta-v can be imparted to an object massing about one metric ton at ranges approaching 30,000 kilometers.

Primary purpose: Towing or manipulation of objects

Secondary purpose: Tactical; pushing enemy ships into each other.

6.3 TRANSPORTER SYSTEMS

Number of Systems: 12
Personnel Transporters: 4 (Transporter Rooms 1-4)
Max Payload Mass: 900kg (1,763 lbs)
Max Range: 40,000 km
Max Beam Up/Out Rate: Approx. 100 persons per hour per Transporter
Cargo Transporters: 4
Max Payload Mass: 800 metric tons. Standard operation is molecular resolution (Non-Lifeform).
Set for quantum (lifeform) resolution: 1 metric ton
Max Beam Up/Out Rate (Quantum Setting): Approx. 100 persons per hour per Transporter
Emergency Transporters: 4
Max Range: 15,000 km (send only) [range depends on available power]
Max Beam Out Rate: 200 persons per hour per Transporter (800 persons per hour with 4 Emergency Transports)

6.4 COMMUNICATIONS

Standard Communications Range: 42,000 - 100,000 kilometers
Standard Data Transmission Speed: 18.5 kiloquads per second
Subspace Communications Speed: Warp 9.9997


DIMENSIONS

Overall Length: 20.2 meters
Overall Height: 5.4 meters
Overall Beam: 13.7 meters

7.0 SCIENCE AND REMOTE SENSING SYSTEMS

7.1 SENSOR SYSTEMS

Long range and navigation sensors are located behind the main deflector dish, to avoid sensor "ghosts" and other detrimental effects consistent with main deflector dish millicochrane static field output. Lateral sensor pallets are located around the rim of the entire starship, providing full coverage in all standard scientific fields, but with emphasis in the following areas:

Astronomical phenomena
Planetary analysis
Remote life-form analysis
EM scanning
Passive neutrino scanning
Parametric subspace field stress (a scan to search for cloaked ships)
Thermal variances
Quasi-stellar material

Each sensor pallet (twenty-four in all) can be interchanged and re-calibrated with any other pallet on the ship. Warp Current sensor: This is an independent subspace graviton field-current scanner, allowing the Akira Class to track ships at high warp by locking onto the eddy currents from the threat ship's warp field, then follow the currents by using multi-model image mapping.

7.2 TACTICAL SENSORS

There are twenty-eight independent tactical sensors on the Akira Class. Each sensor automatically tracks and locks onto incoming hostile vessels and reports bearing, aspect, distance, and vulnerability percentage to the tactical station on the main bridge. Each tactical sensor is approximately 84% efficient against ECM, and can operate fairly well in particle flux nebulae (which has been hitherto impossible).

7.3 STELLAR CARTOGRAPHY

One stellar cartography bay is located on deck 14, with direct EPS power feed from engineering. All information is directed to the bridge and can be displayed on any console or the main viewscreen. The Chief Science Officer's office is located next to the Stellar Cartography bay.

7.4 SCIENCE LABS

There are twenty science labs on the Akira Class; five labs are on deck 4 - adjacent to Sickbay, 10 labs are on deck 5, 2 microlabs on deck 14 and 3 multifunction labs on deck 6. The 5 labs on deck 4 are bio-chem-physics labs that can also be reconfigured for Medical labs. The 10 labs on deck 5 are a mixed batch; three are bio-chem-physics, one is an XT (extra-terrestrial) analysis labs, and one eugenic lab. There are two smaller labs on deck 14 are astrophysics/astrometrics and stellar cartography labs. The final 3 on deck 6 are multi-functional labs that can be equipped for various experiments.

7.5 PROBES

A probe is a device that contains a number of general purpose or mission specific sensors and can be launched from a starship for closer examination of objects in space.

There are nine different classes of probes, which vary in sensor types, power, and performance ratings. The spacecraft frame of a probe consists of molded duranium-tritanium and pressure-bonded lufium boronate, with sensor windows of triple layered transparent aluminum. With a warhead attached, a probe becomes a photon torpedo. The standard equipment of all nine types of probes are instruments to detect and analyze all normal EM and subspace bands, organic and inorganic chemical compounds, atmospheric constituents, and mechanical force properties. All nine types are capable of surviving a powered atmospheric entry, but only three are specially designed for aerial maneuvering and soft landing. These ones can also be used for spatial burying. Many probes can be real-time controlled and piloted from a starship to investigate an environment dangerous hostile or otherwise inaccessible for an away-team.

The nine standard classes are:

7.5.1 Class I Sensor Probe:
Range: 2 x 10^5 kilometers
Delta-v limit: 0.5c
Powerplant: Vectored deuterium microfusion propulsion
Sensors: Full EM/Subspace and interstellar chemistry pallet for in-space applications.
Telemetry: 12,500 channels at 12 megawatts.

7.5.2 Class II Sensor Probe:

Range: 4 x 10^5 kilometers
Delta-v limit: 0.65c
Powerplant: Vectored deuterium microfusion propulsion, extended deuterium fuel supply
Sensors: Same instrumentation as Class I with addition of enhanced long-range particle and field detectors and imaging system
Telemetry: 15,650 channels at 20 megawatts.

7.5.3 Class III Planetary Probe:
Range: 1.2 x 10^6 kilometers
Delta-v limit: 0.65c
Powerplant: Vectored deuterium microfusion propulsion
Sensors: Terrestrial and gas giant sensor pallet with material sample and return capability; onboard chemical analysis submodule
Telemetry: 13,250 channels at ~15 megawatts.
Additional data: Limited SIF hull reinforcement. Full range of terrestrial soft landing to subsurface penetration missions; gas giant atmosphere missions survivable to 450 bar pressure. Limited terrestrial loiter time.

7.5.4 Class IV Stellar Encounter Probe:
Range: 3.5 x 10^6 kilometers
Delta-v limit: 0.6c
Powerplant: Vectored deuterium microfusion propulsion supplemented with continuum driver coil and extended deuterium supply
Sensors: Triply redundant stellar fields and particle detectors, stellar atmosphere analysis suite.
Telemetry: 9,780 channels at 65 megawatts.
Additional data: Six ejectable/survivable radiation flux subprobes. Deployable for nonstellar energy phenomena

7.5.5 Class V Medium-Range Reconnaissance Probe:
Range: 4.3 x 10^10 kilometers
Delta-v limit: Warp 2
Powerplant: Dual-mode matter/antimatter engine; extended duration sublight plus limited duration at warp
Sensors: Extended passive data-gathering and recording systems; full autonomous mission execution and return system
Telemetry: 6,320 channels at 2.5 megawatts.
Additional data: Planetary atmosphere entry and soft landing capability. Low observatory coatings and hull materials. Can be modified for tactical applications with addition of custom sensor countermeasure package.

7.5.6 Class VI Comm Relay/Emergency Beacon:
Range: 4.3 x 10^10 kilometers
Delta-v limit: 0.8c
Powerplant: Microfusion engine with high-output MHD power tap
Sensors: Standard pallet
Telemetry/Comm: 9,270 channel RF and subspace transceiver operating at 350 megawatts peak radiated power. 360 degree omni antenna coverage, 0.0001 arc-second high-gain antenna pointing resolution.
Additional data: Extended deuterium supply for transceiver power generation and planetary orbit plane changes

7.5.7Class VII Remote Culture Study Probe:
Range: 4.5 x 10^8 kilometers
Delta-v limit: Warp 1.5
Powerplant: Dual-mode matter/antimatter engine
Sensors: Passive data gathering system plus subspace transceiver
Telemetry: 1,050 channels at 0.5 megawatts.
Additional data: Applicable to civilizations up to technology level III. Low observability coatings and hull materials. Maximum loiter time: 3.5 months. Low-impact molecular destruct package tied to antitamper detectors.

7.5.8 Class VIII Medium-Range Multimission Warp Probe:
Range: 1.2 x 10^2 light-years
Delta-v limit: Warp 9
Powerplant: Matter/antimatter warp field sustainer engine; duration of 6.5 hours at warp 9; MHD power supply tap for sensors and subspace transceiver
Sensors: Standard pallet plus mission-specific modules
Telemetry: 4,550 channels at 300 megawatts.
Additional data: Applications vary from galactic particles and fields research to early-warning reconnaissance missions

7.5.9 Class IX Long-Range Multimission Warp Probe:
Range: 7.6 x 10^2 light-years
Delta-v limit: Warp 9
Powerplant: Matter/antimatter warp field sustainer engine; duration of 12 hours at warp 9; extended fuel supply for warp 8 maximum flight duration of 14 days
Sensors: Standard pallet plus mission-specific modules
Telemetry: 6,500 channels at 230 megawatts.
Additional data: Limited payload capacity; isolinear memory storage of 3,400 kiloquads; fifty-channel transponder echo. Typical application is emergency-log/message capsule on homing trajectory to nearest starbase or known Starfleet vessel position

8.0 CREW SUPPORT SYSTEMS

8.1 MEDICAL SYSTEMS

Sickbay: There is one large sickbay facility located on deck 4, equipped with two intensive-care wards, a laboratory, a nursery, the CMO's office, four surgical suites, a null-grav therapy ward, a morgue, a biohazard isolation unit, and a dental care office. Also pursuant to new Medical Protocols, all Medical Facilities are equipped with holo-emitters for the emergency usage of the Emergency Medical Holograph System.

The Ship's Counselor has his office located on Deck 4, near the Medical section. It consists of a private office, with standard furnishings (decorated to the Counselors preference), personal viewscreen, a computer display, and replicator. An individual therapy room furnished with chairs and couch for one on one sessions, as well as a large, group therapy room, consisting of several couches and chairs, are located adjacent to the Counselor's office.

In the event of a crewmember suffering a psychotic episode, and needing to be isolated from the crew, the ill crewman is kept in sickbay, in the isolation unit, or in the intensive care units, as determined by bed availability.

8.2 CREW QUARTERS SYSTEMS

General Overview: All crew and officers' (except for the Commanding officer's and Executive Officer's, which are located on deck 2) quarters are located on decks A, B, 2-5, 13-15 and deck 17.

Individuals assigned to the Akira Class for periods over six months are permitted to reconfigure their quarters within hardware, volume, and mass limits. Individuals assigned for shorter periods are generally restricted to standard quarters configuration.

Crew Quarters: Standard Living Quarters are provided for both Starfleet Non-Commissioned Officers and Ensigns. These persons are expected to share their room with another crewmate due to space restrictions aboard the starship. After six months, crewmembers are permitted to bring family aboard the ship and a slightly larger room is allocated to them.

Two NCO's or two Ensigns are assigned to a suite. Accommodations include 2 bedrooms with standard beds, connected by a living/work area. A washroom with ultrasonic shower is located off of each bedroom. A food replicator and a personal holographic viewer are located in the living area. Small pets are allowed to NCO's.

Enlisted crewmembers share quarters with up to 4 others. Accommodations include 2 bedrooms with twin beds, connected by a living/work area. A washroom with ultrasonic shower is located off of each bedroom. A food replicator and a personal holographic viewer are located in the living area. Pets are not allowed to enlisted crew.

Crewmen can request that their living quarters be combined to create a single larger dwelling.

Officers' Quarters: Starfleet personnel from the rank of Lieutenant Junior Grade up to Commander are given one set of quarters to themselves. In addition, department heads and their assistants are granted such privileges as well, in an effort to provide a private environment to perform off-duty work. After six months, officers are permitted to bring family aboard the ship and a slightly larger room is allocated to them. Members of the Captain's Senior Staff can have these restrictions waved with the Captain's permission.

These accommodations typically include a small bathroom, a bedroom (with standard bed), a living/work area, a food replicator, an ultrasonic shower, personal holographic viewer, and provisions for pets.

Officers may request that their living quarters be combined to form one large dwelling.

Executive Quarters: The Captain and Executive Officer of the vessel both have special quarters, located on Deck 2. They are located on a higher deck because these two people must be closer to the bridge in the event of an Alert situation.

These quarters are much more luxurious than any others on the ship, with the exception of the VIP/Diplomatic Guest quarters. Both the Executive Officer's and the Captain's quarters are larger than standard Officers Quarters, and this space generally has the following accommodations: a bedroom (with a nice, fluffy bed), living/work area, bathroom, food replicator, ultrasonic shower, old-fashioned water shower, personal holographic viewer, provisions for pets, and even a null-grav sleeping chamber. These quarters are similar in "comfort" to those of a high-ranking officer's quarters on a Galaxy Class Starship.

VIP/Diplomatic Guest Quarters: The Akira Class is a symbol of UFP authority, a tool in dealing with other races. Starfleet intends to use Akira Class in diplomacy several times, and the need to transport or accommodate Very Important Persons, diplomats, or ambassadors may arise.

These quarters are located on Deck 3. These quarters include a bedroom, spacious living/work area, personal viewscreen, ultrasonic shower, bathtub/water shower, provisions for pets, food replicator, and a null-grav sleeping chamber. These quarters can be immediately converted to class H, K, L, N, and N2 environments. While smaller in size than those facilities aboard a Galaxy Class or the newer Norway Class vessel, they are still far superior in fit and finish when compared to Starfleet Officer quarters.

8.3 RECREATIONAL SYSTEMS

General Overview: The Akira Class design has been maximized for tactical and scientific usage. However, it is realized that the stress of operating at 99% efficiency on a ship that is built for deep-space exploration can be dangerous, so there are some recreational facilities on the Akira Class.

Holodecks: There are two standard holodeck facilities on the Akira Class, both located on deck 3.

Holosuites: These are smaller versions of standard Federation Holodecks, designed for individual usage (the two Holodecks themselves are to be used by groups or individual officers; enlisted crewmen and cadets are not allowed to use the Holodecks under normal circumstances). They do everything that their larger siblings do, only these Holosuites can't handle as many variables and are less detailed. They are equivalent to the Holodecks on an Intrepid class Starship. There are eight Holosuites Akira Class, all of them located on deck 2 of the Bridge Conn tower.

Phaser Range: Sometimes the only way a Starfleet officer or crewman can vent his frustration is through the barrel of a phaser rifle. The phaser range is located on deck 14. The phaser range is heavily shielded, the walls being composed of a Duranium alloy, which can absorb setting 16 phaser blasts without taking a scratch.

Normal phaser recreation and practice is used with a type II or type III phaser set to level 3 (heavy stun). The person stands in the middle of the room, with no light except for the circle in the middle of the floor that the person is standing in. Colored circular dots approximately the size of a human hand whirl across the walls, and the person aims and fires. After completing a round, the amounts of hits and misses, along with the percentage of accuracy is announced by the ship's computer.

The phaser range is also used by security to train ship's personnel in marksmanship. During training, the holo-emitters in the phaser range are activated, creating a holographic setting, similar to what a holodeck does. Personnel are "turned loose" either independently or in an Away Team formation to explore the setting presented to them, and the security officer in charge will take notes on the performance of each person as they take cover, return fire, protect each other, and perform a variety of different scenarios. All personnel on an Akira Class are tested every six months in phaser marksmanship.

There are 25 levels of phaser marksmanship. All personnel are trained in the operation of phaser types I and II up to level 14. All security personnel on a Akira Class must maintain a level 17 marksmanship for all phaser types. The true marksman can maintain at least an 80% hit ratio on level 23. The Akira Class carries both the standard phaser rifle and the new compression phaser rifles.

Weight Room/ Gymnasium: Some Starfleet personnel can find solace from the aggravations of day-to-day life in exercising their bodies. The Security department encourages constant use of this facility; tournaments and competitions are held regularly in this room.

The weight room is located on deck 16. This weight room has full body building and exercise apparatuses available for your disposal; any kind of exercise can be performed here, be it Terran, Klingon, Vulcan (it isn't logical to let your body atrophy), Bajoran, Trill, or others.

There is also a wrestling mat in the weight room, which can be used for wrestling, martial arts, kick-boxing, or any other sort of hand-to-hand fighting. There are holo-diodes along the walls and ceiling which generate a holographic opponent (if you can't find someone to challenge), trained in the combat field of your choice. The computer stores your personal attack and defense patterns as it gains experience on your style of fighting, and adapts to defeat you. All personnel on the Akira Class must go through a full physical fitness and hand-to-hand combat test every six months.

There are also racks of hand-to-hand combat weapons, for use in training. Ancient weapon proficiencies for Starfleet personnel are recommended by Akira Class's security division; phasers may not always be available for use in contingencies. Terran, Klingon, Betazoid, Vulcan, Bajoran, and other non-energy weapons are available for training.

8.4 THE LOUNGE

This is a large lounge, located on deck 5, forward. It has a very relaxed and congenial air about it; the Lounge is the only place on the ship where rank means nothing - "sir" need not be uttered when a person of lower rank addresses an officer, and everyone is on an equal footing. Opinions can be voiced in complete safety. This lounge is the social center of the ship.

The Lounge has a battery of recreational games and assorted "stuff". 3-D chess, pool tables, poker tables (complete with holographic dealer and chips), windows that look out into space, heavily cushioned seats, and numerous other games. There is also a bar (with holographic bartender), and it stores various potent alcoholic beverages, such as chech'tluth, Aldebaran whiskey, Saurian brandy, Tzartak aperitif, Tamarian Frost, C&E Warp Lager, Warnog, Antarean brandy, and countless others.

9.0 AUXILIARY SPACECRAFT SYSTEMS

9.1 FLIGHT BAY

General Overview: Located at the dorsal bow of the ship, the Flight bay module has replaced the shuttlebay module that is in previous Classes Starships. This Flight bay contains support services for the latest in Starfleet shuttle and runabout designs. The Flight bay is controlled by a space/air-traffic control room, known as "Flight Operations". This is located against the forward wall of the Flight bay, next to the exit for the turbolift, which in turn is supervised by the TIC. The Flight bay typically contains the following, though can change on a mission to mission basis:


SHUTTLECRAFT

6 Type 18 Shuttlepods
2 Type 6 Personnel Shuttles
2 Type 7 Personnel Shuttles
4 Danube Class Runabouts
36 Valkryie  Class Space Superiority Fighters
10 Sphinx Class Work Pods


9.2.1 TYPE-18 SHUTTLEPOD

Type: Medium short-range sublight shuttle.
Accommodation: Two; pilot and system manager.
Power Plant: Two 800 millicochrane impulse driver engines, four RCS thrusters, four sarium krellide storage cells.
Dimensions: Length, 4.5 m; beam, 3.1 m; height 1.8 m.
Mass: 1.12 metric tones.
Performance: Maximum delta-v, 16,750 m/sec.
Armament: Three Type-V phaser emitters.

Developed in the mid-2360s, the Type-18 Shuttlepod is somewhat of a departure from the traditional layout for ships of its size. In response to the growing threat of conflicts with various galactic powers bordering or near to the Federation, this shuttlepod was designed to handle more vigorous assignments that still fell into the short-range roles of a shuttlepods. Even with her parent vessel under attack, the Type-18 was designed to function in battle situations and could even be used as an escape vehicle should the need arise. Lacking a warp core, the pod is a poor choice for travel beyond several million kilometers. Ships of this type are seeing limited deployment on various border patrol and defensive starship classes, including the Defiant-, Sabre-, and Steamrunner-class.

9.2.2 TYPE-6 PERSONNEL SHUTTLE (UPRTD)

Type: Light short-range warp shuttle.
Accommodation: Two flight crew, six passengers.
Power Plant: One 50 cochrane warp engine, two 750 millicochrane impulse engines, four RCS thrusters.
Dimensions: Length, 6.0 m; beam, 4.4 m; height 2.7 m.
Mass: 3.38 metric tones.
Performance: Sustained Warp 3.
Armament: Two Type-IV phaser emitters.

The Type-6 Personnel Shuttlecraft is currently in widespread use throughout Starfleet, and is only recently being replaced by the slightly newer Type-8 Shuttle of similar design. The Uprated version of this vessel is considered to be the ideal choice for short-range interplanetary travel, and its large size makes it suitable to transport personnel and cargo over these distances. A short-range transporter is installed onboard, allowing for easy beam out of cargo and crew to and from their destination. Atmospheric flight capabilities allow for this shuttle type to land on planetary surfaces. Ships of this type are currently in use aboard virtually every medium to large sized starship class, as well as aboard stations and Starbases.

The Type-6 is perhaps the most successful shuttle design to date, and its overall structure and components are the foundations upon which the Type-8, -9, and -10 spaceframes are based.

Major technological advancements in the 2370�s allowed for further upgrades to be made to the engine systems aboard shuttlecraft. These upgrades make this craft more capable of long-range spaceflight and, like its starship counterparst, no longer damages subspace.

9.2.3 TYPE-7 PERSONNEL SHUTTLE (UPRTD)

Type: Medium short-range warp shuttle.
Accommodation: Two flight crew, six passengers.
Power Plant: One 150 cochrane warp engine, two 750 millicochrane impulse engines, four RCS thrusters.
Dimensions: Length, 8.5 m; beam, 3.6 m; height 2.7 m.
Mass: 3.96 metric tones.
Performance: Sustained Warp 4.
Armament: Two Type-V phaser emitters.

With the borders of the Federation ever expanding as Starfleet reached the latter half of the 24th Century, the ASDB realized that there was sufficient need for a shuttlecraft capable of making the week-long journeys between planets and stations at low warp. The Type-7 was the first step in this direction, and is equipped for short-range warp travel. To offer comfort to its occupants, the shuttle contains a standard replicator system and sleeping compartments. The forward and aft compartments are separated by a small, informal living area that has a workstation and table. The aft area is normally equipped with a bunk area, but can easily be converted to allow for increased cargo capabilities. A medium-range transporter and atmospheric flight capabilities allow for the Type-7 to service starbases, starships and stations. Ships of this type are currently in use aboard most medium to large sized starship classes, as well as aboard stations and Starbases.

Major technological advancements in the 2370�s allowed for further upgrades to be made to the engine systems aboard shuttlecraft. These upgrades make this craft more capable of long-range spaceflight and, like its starship counterparts, no longer damages subspace.

9.2.4 TYPE-M1 SPHINX WORKPOD

Type: Light industrial manipulator (Sphinx M1A), medium industrial manipulator (Sphinx M2A), medium tug (Sphinx MT3D).
Accommodation: Pilot (M1A, M2A); pilot and cargo specialist (MT3D).
Power Plant: One microfusion reactor, four alfinium krellide power storage cells, four RCS thrusters.
Dimensions: Length, 6.2 m; beam, 2.6 m; height 2.5 m.
Mass: 1.2 metric tones.
Performance: Maximum delta-v, 2,000 m/sec.
Armament: None

Along with the Work Bee, the various Sphinx Workpod types are a common site in any large Federation shipbuilding facility. Intended never to be far from its parent facility, the Workpod was designed to allow greater user hands-on control of the various functions involved with day-to-day construction and repair. With more tools then the Work Bee, the Sphinx M1A and M2A are used primarily to manipulate spaceborne hardware during construction. The Sphinx MT3D is a third variant of this robust design, and can be used for towing objects to and from the construction site. Furthermore, a group of MT3D units can work together to tow larger objects into place, including most starship classes, when large tractor emitters are not an option. All three variants utilize the same basic systems, and are small enough to fit inside of a Type-9A Cargo Shuttlecraft. All variants of the Sphinx Workpod are commonly found at Federation Fleet Yards and Starbases, as well as on larger Starfleet vessels.

9.3 Valkyrie SPACE SUPERIORITY FIGHTER

General Overview: The Valkyrie Space Superiority Fighter was born in 2368, roughly ten years after the launch of the Danube Class Runabout. The design was based on the Danube Class Runabout. While Starfleet had utilized small Starfighters before, all were modified shuttlecraft or other small utility vehicles, preferring to utilize existing designs and technologies rather than develop Space Fighter specific craft.

The Valkeryie  is a sharp departure in this line of thinking, but still based on existing technology. Utilizing the Impulse Engine Configuration, Computer Core, and Modular frame upon which the Danube Class was built, the Advanced Starship Design Bureau of Utopia Planitia lifted those components exactly and integrated them into a space frame nearly identical, but slightly smaller, to the Danube Class.

The Valkeryie Class has a crew of 2, a pilot and an operations/weapons officer sitting side by side. Directly Aft of the Pilots compartment are the Impulse Engines, Computer Core, Micro-Torpedo magazines, Primary and Emergency Fusion Generators, Primary Phaser Generators, the Shield Generators and other necessary systems. The fighter is also armed with two micro-torpedo launchers that can carry up to 20 torpedoes in their onboard magazines, and also sports two Type VI Shuttle Class Phaser Emitters to cover both the forward and aft firing arcs. To increase combat effectiveness against capital vessels, the Valkyrie Class can also mount 4 Mark XXV Photon Torpedoes outboard along the bottom of the craft.

Note: the Valkeryie class comes standard without a warp core. She is limited to sublight impulse operations. This does not mean she cannot be modified to utilize such technology, but it was determined that with the Akira's warp engines, equipping the fighters was expensive, time consuming, increased operational repair times, and did not give the fighter any added benefit.

10.0 AKIRA CLASS FLIGHT OPERATIONS

Operations aboard an Akira class starship fall under one of four categories: flight operations, primary mission operations, secondary mission operations, and flight deck operations.

Flight Operations are all operations that relate directly to the function of the starship itself, which include power generation, starship upkeep, environmental systems, and any other system that is maintained and used to keep the vessel spaceworthy.

Primary Mission Operations entail all tasks assigned and directed from the Main Bridge, and typically require full control and discretion over ship navigation and ship's resources.

Secondary Mission operations are those operations that are not under the direct control of the Main Bridge, but do not impact Primary Mission Operations. Some examples of secondary mission operations include long-range cultural, diplomatic or scientific programs run by independent or semi-autonomous groups aboard the starship.

Flight Deck Operations are those operations that typically fall under Secondary Mission operations, but fall under the control of the Tactical Information Center. It is not uncommon for Flight Deck Operations to supercede Primary Mission Operations, particularly in combat missions.

10.1 MISSION TYPES

Despite the fact that the Akira Class design philosophy leaned heavily toward Tactical and Defensive Missions, she is still classified as a multi-role Starship, in keeping with Federation Council Policy. This offers the Federation, and Starfleet, flexibility in assigning nearly any objective within the realm of Starfleet's assigned duties.

Mission for an Akira Class starship may fall into one of the following categories, in order of her strongest capable mission parameter to her weakest mission parameter.

Tactical/Defensive Operations: Typical Missions include patrolling the Gorn Border, Cardassian Occupation zones, Borg interdiction missions, or protecting any Federation interest from hostile intent in planetary or interstellar conflicts.


Emergency/Search and Rescue: Typical Missions include answering standard Federation emergency beacons, extraction of Federation or Non-Federation citizens in distress, retrieval of Federation or Non-Federation spacecraft in distress, small-scale planetary evacuation - medium or large scale planetary evacuation is not feasible.


Federation Policy and Diplomacy: An Akira class starship can be used as an envoy during deep-space operations.
Deep-space Exploration: The Akira class is equipped for long-range interstellar survey and mapping missions, as well as the ability to explore a wide variety of planetary classifications.


Contact with Alien Lifeforms: Pursuant to Starfleet Policy regarding the discovery of new life, facilities aboard the Akira class include a variety of exobiology and xenobiological suites, and a small cultural anthropology staff, allowing for limited deep-space life form study and interaction.


Ongoing Scientific Investigation: An Akira class starship is equipped with scientific laboratories and a wide variety of sensor probes and sensor arrays, giving her the ability to perform a wide variety of ongoing scientific investigations.

10.2 OPERATING MODES

The normal flight and mission operations of the Akira class starship are conducted in accordance with a variety of Starfleet standard operating rules, determined by the current operational state of the starship. These operational states are determined by the Commanding Officer, although in certain specific cases, the Computer can automatically adjust to a higher alert status.

The major operating modes are:

Green Alert: The normal operating condition of the ship.


Yellow Alert: Designates a ship wide state of increased preparedness for possible crisis situations.


Red Alert: Designates an actual state of emergency in which the ship or crew is endangered, immediately impending emergencies, or combat situations.


External Support Mode: State of reduced activity that exists when a ship is docked at a starbase or other support facility.


Reduced Power Mode: this protocol is invoked in case of a major failure in spacecraft power generation, in case of critical fuel shortage, or in the event that a tactical situation requires severe curtailment of onboard power generation.

During Cruise Mode, the ship�s operations are run on three 8-hour shifts designated Alpha, Beta, and Gamma. Should a crisis develop, it may revert to a four-shift system of six hours to keep crew fatigue down.

Typical Shift command is as follows:

Alpha Shift � Captain (CO)
Beta Shift � Executive Officer (XO)
Gamma Shift - Second Officer / Night Conn

10.3 SEPARATED FLIGHT MODE

Due to the unique shape of her hull, the Akira class does not have a separated flight mode. While the hull can eject the warp nacelle assembly quickly and flee via impulse, her lack of a clearly identifiable saucer section precludes this capability.

10.4 LANDING MODE

Due to the unique shape of her hull, the Akira class cannot land within a gravity well and maintain hull integrity for Transatmospheric operations. This does not mean that the hull cannot withstand a landing - quite the contrary, in an extreme emergency, the Akira class could effect a surface landing while only losing an estimated 45% of hull integrity while structural members are estimated to have failure rates as high as 75%. While integrity is not high enough to allow for deep-space operations, enough of the internal volume and structural members should remain to allow for a landing that is safe for her crew.

10.5 MAINTENANCE

Though much of a modern starship�s systems are automated, they do require regular maintenance and upgrade. Maintenance is typically the purview of the Engineering, but personnel from certain divisions that are more familiar with them can also maintain specific systems.

Maintenance of onboard systems is almost constant, and varies in severity. Everything from fixing a stubborn replicator, to realigning the Dilithium matrix is handled by technicians and engineers on a regular basis. Not all systems are checked centrally by Main Engineering; to do so would occupy too much computer time by routing every single process to one location. To alleviate that, systems are compartmentalized by deck and location for checking. Department heads are expected to run regular diagnostics of their own equipment and report anomalies to Engineering to be fixed.

Systems Diagnostics
All key operating systems and subsystems aboard the ship have a number of preprogrammed diagnostic software and procedures for use when actual or potential malfunctions are experienced. These various diagnostic protocols are generally classified into five different levels, each offering a different degree of crew verification of automated tests. Which type of diagnostic is used in a given situation will generally depend upon the criticality of a situation, and upon the amount of time available for the test procedures.

Level 1 Diagnostic - This refers to the most comprehensive type of system diagnostic, which is normally conducted on ship's systems. Extensive automated diagnostic routines are performed, but a Level 1 diagnostic requires a team of crew members to physically verify operation of system mechanisms and to system readings, rather than depending on the automated programs, thereby guarding against possible malfunctions in self-testing hardware and software. Level 1 diagnostics on major systems can take several hours, and in many cases, the subject system must be taken off-line for all tests to be performed.

Level 2 Diagnostic - This refers to a comprehensive system diagnostic protocol, which, like a Level 1, involves extensive automated routines, but requires crew verification of fewer operational elements. This yields a somewhat less reliable system analysis, but is a procedure that can be conducted in less than half the time of the more complex tests.

Level 3 Diagnostic - This protocol is similar to Level 1 and 2 diagnostics but involves crew verification of only key mechanics and systems readings. Level 3 diagnostics are intended to be performed in ten minutes or less.

Level 4 Diagnostic - This automated procedure is intended for use whenever trouble is suspected with a given system. This protocol is similar to Level 5, but involves more sophisticated batteries of automated diagnostics. For most systems, Level 4 diagnostics can be performed in less than 30 seconds.

Level 5 Diagnostic - This automated procedure is intended for routine use to verify system performance. Level 5 diagnostics, which usually require less than 2.5 seconds, are typically performed on most systems on at least a daily basis, and are also performed during crisis situations when time and system resources are carefully managed.

11.0 EMERGENCY OPERATIONS

11.1 EMERGENCY MEDICAL OPERATIONS

Pursuant to Starfleet General Policy and Starfleet Medical Emergency Operations, at least 40% of the officers and crew of the Akira class are cross-trained to serve as Emergency Medical Technicians, to serve as triage specialists, medics, and other emergency medical functions along with non-medical emergency operations in engineering or tactical departments. This set of policies was established due to the wide variety of emergencies, both medical and otherwise, that a Federation Starship could respond to on any given mission.

The observation lounge on deck A along with the VIP/guest quarters on deck B can serve as emergency intensive care wards, with an estimated online timeframe of 30 minutes with maximum engineering support. Further, the primary flight deck has 5 mobile hospitals that can be deployed either on the flight deck, or transported to Cargo Bay 2 or 3 for emergency overflow triage centers. Cargo Bay 3 also provides for the emergency atmosphere recalibration to type H,K, or L environments, intended for non-humanoid casualties. All facilities are equipped with full Bio-hazard suites, to minimize and prevent crew exposure to potentially deadly diseases.

11.2 LIFEBOATS

Aside from the escape options of shuttlecraft, fighter, or transporters, the primary survival craft of the Akira class is the escape pod or lifeboat. Each Akira carries a total of 100 of the 8-person variants, which measures 5.6 meters tall and 6.2 meters along the edge of the triangle. Each Lifeboat can support a full compliment for 6 months, longer if the lifeboats connect together. All are equipped with navigational sensors, microthrusters, plus emergency subspace communication equipment.

11.3 RESCUE AND EVACUATION OPERATIONS

Rescue and Evacuation Operations for an Akira class starship will fall into one of two categories - abandoning the starship, or rescue and evacuation from a planetary body or another starship.

Rescue Scenarios

Resources are available for rescue and evacuation to an Akira class starship include:

The ability to transport 350 persons per hour to the ship via personnel transporters.
The availability of the 3 Type 6 shuttlecraft to be on hot-standby for immediate launch, with all additional shuttlecraft available for launch in an hours notice. Total transport capabilities of these craft vary due to differing classifications but an average load of 150 persons can be offloaded per hour from a standard orbit to an M Class planetary surface.


Capacity to support up to 4500 evacuees with conversion of the flight bay and cargo bays to emergency living quarters.


Ability to convert Holodecks, the Observation Lounge and the Crew Lounge to emergency triage and medical centers.


Ability to temporarily convert Cargo Bay 3 to type H,K, or L environments, intended for non-humanoid casualties.

Abandon-Ship Scenarios

Resources available for abandon-ship scenarios from an Akira class starship include:

The ability to transport 350 persons per hour from the ship via personnel and emergency transporters.


The availability of the 3 Type 6 shuttlecraft to be on hot-standby for immediate launch, with all additional shuttlecraft available for launch in an hours notice. Total transport capabilities of these craft vary due to differing classifications but an average load of 150 persons can be offloaded per hour from a standard orbit to an M Class planetary surface.


Protocols also include the use of Lifeboats. Each lifeboat carries a total of 100 of the 8-person variants, which measures 5.6 meters tall and 6.2 meters along the edge of the triangle. Each Lifeboat can support a full compliment for 6 months, longer if they connect together in "Gaggle Mode".


Environmental Suits are available for evacuation directly into a vacuum. In such a scenario, personnel can evacuate via airlocks, the flight bay, or through exterior turbolift couplings. Environmental suits are available at all exterior egress points, along with survival lockers spaced through-out the habitable portions of the starship.
Many exterior windows are removable, allowing for egress. However, these manual releases are only activated in the event of atmosphere loss, power loss, certain Red Alert conditions, and only if personnel in contiguous compartments have access to an environmental suit.

APPENDIX A - DECK LAYOUT

Deck A: Tactical Information Center/Flight Operations, Flight Operations Senior and Junior Officer Living Quarters


Deck B: TIC Maintenance Support Section, Flight Operations Enlisted Personnel Living Quarters


Deck C: Sail Torpedo Control Room, Sail Torpedo Launchers (Fore and Aft), Emergency Shield Generators 1-2, Senior and Junior Officer Living Quarters


Deck D: Sail Torpedo Magazine and Manufacturing Area, Senior and Junior Officer Living Quarters


Deck 1: Captain�s Ready Room, Main Bridge, Briefing Room, Observation Lounge


Deck 2: Junior and Senior Officers Quarters, VIP/Guest Quarters, Holosuites


Deck 3: Visiting Officers / Noncommissioned Officer's Quarters, Holodecks, Primary

Shield Generators


Deck 4: Sickbay, Chief Medical Officer's Office, Primary Science Labs, Junior and Senior Officers Quarters, Counselor's Office


Deck 5: Junior Officers and Crew Quarters, Main Lounge, Secondary Science Labs , Cargo Bay 1 & 2


Deck 6: Primary Computer Core Control, Tertiary Science Labs, Cargo Bay 3 - Primary Cargo Bay 


Deck 7: Primary Computer Core, Shuttle Maintenance Hangar and Storage 


Deck 8: Primary Computer Core, Flight Operations Armory, Fighter Maintenance Hangar and Storage


Deck 9: Fore and Aft Torpedo Bay Control, Torpedo Magazine and Manufacturing Area, Shuttle and Fighter Hangar Elevator Support Systems, Primary Shield Generators


Deck 10: Transporter Rooms 3 and 4, Shuttle and Fighter Preparation Pre-Flight Bay, Emergency Shield Generators 3-4


Deck 11: Primary Machine Shop, Primary Maintenance Support Center, Shuttlebay [Fore and Aft access via deck 12


Deck 12: Primary Systems Support Compartments, Shuttlebay [Fore and Aft Access]


Deck 13: Enlisted Personnel Living Quarters, Secondary Shuttle and Fighter Maintenance Hangar, Flight Deck Operations and Maintenance


Deck 14: Black Operations Equipment Storage (USS Tomcat ONLY)


Deck 15:


Deck 16:


Deck 17:

Deck 18:


Deck 19: